Stability of a Crank-Nicolson pressure correction scheme based on staggered discretizations
نویسندگان
چکیده
منابع مشابه
A Note on Crank-Nicolson Scheme for Burgers’ Equation
In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analy...
متن کاملA Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications
We propose and analyze a linear stabilization of the Crank-Nicolson Leap-Frog (CNLF) method that removes all timestep / CFL conditions for stability and controls the unstable mode. It also increases the SPD part of the linear system to be solved at each time step. We give a proof of unconditional stability of the method as well as a proof of unconditional, asymptotic stability of both the stabl...
متن کاملCrank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable. Keywords—Generalized Rosenau-B...
متن کاملPetrov-Galerkin Crank-Nicolson Scheme for Parabolic Optimal Control Problems on Nonsmooth Domains
In this paper we transfer the a priori error analysis for the discretization of parabolic optimal control problems on domains allowing for H regularity (i.e. either with smooth boundary or polygonal and convex) to a large class of nonsmooth domains. We show that a combination of two ingredients for the optimal convergence rates with respect to the spatial and the temporal discretization is requ...
متن کاملCrank-nicolson Finite Element Discretizations for a 2d Linear Schrödinger-type Equation Posed in a Noncylindrical Domain
Motivated by the paraxial narrow–angle approximation of the Helmholtz equation in domains of variable topography that appears as an important application in Underwater Acoustics, we analyze a general Schrödinger-type equation posed on two-dimensional variable domains with mixed boundary conditions. The resulting initialand boundary-value problem is transformed into an equivalent one posed on a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Fluids
سال: 2013
ISSN: 0271-2091
DOI: 10.1002/fld.3837